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Superfund cleanups and birth weight

More than 78 million Americans — 24% of the U.S. population, including 17 million children and 11

million elderly individuals — live within three miles of a hazardous waste site [1]. In 1980, Congress

enacted the Comprehensive Environmental Response, Compensation, and Liability Act, granting

the Environmental ProtectionAgency authority to identify and remediate these sites, which became

known as Superfund sites. Remediation remains contentious due to high costs — often tens of

millions per site — and disputes over whether the benefits justify the expense [2].

Q: Does Superfund cleanup impact the proportion of low birth weight births?

Binary treatment: Zi ∈ {0, 1} indicates whether the ith Superfund site was remediated

between 2001 and 2015.

Measured confounders: Xi ∈ R11 denotes a vector of 10 sociodemographic confounders

derived from the 2000 Decennial Census, measured within 2 km buffers around each site,

combined with an intercept.

Outcome: Yi ∈ R is the proportion of low birth weight (birth weight ≤ 2500 grams) births within

a 2 km buffer around site i during the period 2016 to 2020.

One key challenge: unmeasured spatial confounding. Unmeasured spatial confounders are un-

observed spatially structured variables that influence both treatment assignment and outcomes,

potentially leading to biased effect estimates and invalid confidence intervals [3, 4]. Examples:

community engagement and local funding availability.

Spatial regression is standard practice

To account for potential unmeasured spatial confounding, researchers frequently introduce a mean

zero spatially autocorrelated error term into a linear regression model and interpret the treatment

coefficient as a causal effect. The general form of a spatial regression model is

Y = Xβ + τZ + ε,

ε ⊥⊥ (X, Z),
E(ε) = 0,Var(ε) = Σ = σ2In + ρ2S

where the covariance matrix of the errors, Σ, is comprised of both independent and identically

distributed error (σ2In) and spatially autocorrelated error (ρ2S).

The generalized least squares (GLS) estimator of τ is(
β̂GLS
τ̂GLS

)
=
((

X Z
)T Σ−1 (X Z

))−1 (
X Z

)T Σ−1Y . (1)

Three common examples

1. For a model with random intercepts at the state-level, S is a block diagonal matrix with kth
block equal to Jnk, where nk =

∑n
i=1 I(Ci = k) and Jnk is a nk × nk matrix of ones.

2. For an intrinsic conditional autoregressive model, S = (D − W )−1 where W is a spatial

weighting matrix and D is the diagonal matrix with ith entry equal to
∑n

j=1 Wij.

3. For a Gaussian process model, S = K where K is the kernel of the Gaussian process.

Q: Can spatial regression adjust for unmeasured spatial confounding?
The prevailing view is that spatial regression should not be used to adjust for unmeasured spatial

confounding, due to the bias of the treatment coefficient estimate in finite samples. Recently,

[5] established that spatial regression models with Gaussian process covariance yield consistent

treatment effect estimates under unmeasured confounding that is continuous in space.

Spatial regression is designed to approximately balance the means

of a hidden set of spatial covariates, thereby adjusting for a specific

class of unmeasured confounders with spatial autocorrelation.

An encompassing weighting framework

Proposition 1 (GLS estimators are weighting estimators) The GLS estimator of τ in Equation 1 can

be expressed as

τ̂GLS =
∑

i:Zi=1
wiYi −

∑
i:Zi=0

wiYi

for some weights of w1, . . . , wn. A closed-form expression for the weights are

(w1, . . . , wn)T = M
(In − Σ−1X(XT Σ−1X)−1XT )Σ−1Z

ZT Σ−1(In − X(XT Σ−1X)−1XT Σ−1)Z
where M is the diagonal matrix with (i, i) entry Mii = 2Zi − 1.

Proposition 2 (GLS estimators areminimal dispersion balancingweights estimators) Let v1, . . . , vn

be the eigenvectors ofS with corresponding eigenvalues λ1 ≥ . . . ≥ λn ≥ 0. Consider the following
quadratic programming problem:

min
w

{
σ2

n∑
i=1

w2
i + ρ2

n∑
k=1

λk

( ∑
i:Zi=1

wivki −
∑

i:Zi=0
wivki

)2}
(2)

subject to

{∑
i:Zi=1 wi = 1,

∑
i:Zi=0 wi = 1∑

i:Zi=1 wiXi =
∑

i:Zi=0 wiXi
(3)

A solution to this problem are the implied weights of the GLS estimator,

w = M
(In − Σ−1X(XT Σ−1X)−1XT )Σ−1Z

ZT Σ−1(In − X(XT Σ−1X)−1XT Σ−1)Z
.

Unmeasured confounding bias and Moran’s I

Proposition 3 Suppose that consistency, positivity, and conditional ignorability given (X, U) hold.
Further suppose the outcome model is linear, i.e. Yi = βT Xi + τZi + γUi + εi. Then the bias of the

spatial regression estimator τ̂GLS in estimating τATT = τ , conditional on (X, Z, U ), is:∣∣∣∣E(τ̂GLS|X, Z, U ) − τ

∣∣∣∣ =
∣∣∣∣γ(

∑
i:Zi=1

wiUi −
∑

i:Zi=0
wiUi)

∣∣∣∣
≤ |γ|

√√√√ c0(2σ2 + ρ2λ1 + ρ2λn)2
4(σ2 + ρ2λ1)(σ2 + ρ2λn)(σ2 + ρ2λ1I(U ; S))

n∑
i=1

(Ui − Ū)2

where c0 = σ2 ∑n
i=1 w2

i + ρ2 ∑n
k=1 λk(

∑
i:Zi=1 wivki −

∑
i:Zi=0 wivki)2 and I(U ; S) is the Moran’s I

statistic of U , a widely used measure of spatial autocorrelation.

(a) I(U ; S) = 0.76,
Imb(U ) = 4.50 × 10−6.

(b) I(U ; S) = 0.57,
Imb(U ) = 6.43 × 10−4.

(c) I(U ; S) = 0.09,
Imb(U ) = 1.45 × 10−3.

(d) I(U ; S) = 0.98,
Imb(U ) = −4.46 × 10−6.

(e) I(U ; S) = 0.48,
Imb(U ) = −4.81 × 10−5.

(f) I(U ; S) = 0.10,
Imb(U ) = 2.16 × 10−3.

(g) I(U ; S) = 0.99,
Imb(U ) = −1.65 × 10−5.

(h) I(U ; S) = 0.51,
Imb(U ) = −7.43 × 10−5.

(i) I(U ; S) = 0.09,
Imb(U ) = −1.24 × 10−4.

Figure 1. Three examples of unmeasured confounders with Moran’s I and their mean imbalances. Top row shows

three examples from the Random Effects model, middle row shows three examples from the intrinsic conditional

autoregressive model, and bottom row shows three examples from the Gaussian Process model.

Amore general spatialweighting approach

We propose an alternative estimator that accounts for diverse forms of unmeasured spatial con-

foundingwhile relaxing the assumptions of linearity and effect homogeneity that spatial regression

relies on.

Let Xaug = (X, V ) ∈ Rn×(11+J) be the set of measured covariates including intercept, augmented

with J pre-selected eigenvectors V = (v1, . . . , vJ) ∈ Rn×J . Building on [6, 7, 8], consider the

following quadratic programming problem in the control group:

min
w

∑
i:Zi=0

w2
i , subject to


∣∣∣∣∑i:Zi=0 wiBk(Xaug

i ) − 1
nt

∑
i:Zi=1 Bk(Xaug

i )
∣∣∣∣ ≤ δk, k = 1, 2, . . . , K∑

i:Zi=0 wi = 1, wi ≥ 0 ∀i

where Bk(Xaug), k = 1, 2, . . . , K is a set of basis functions and nt =
∑n

i=1 Zi.

Define the spatial weighting estimator of the ATT as τ̂SW = 1
nt

∑
i:Zi=1 Yi −

∑
i:Zi=0 wiYi where

{wi}Zi=0 are the weights obtained by solving the optimization problem above.

Cleanup may reduce the proportion of low birth weight births

Method Risk Ratio Estimate

Ordinary least squares 0.95 (0.88, 1.02)

Random effects 0.94 (0.84, 1.07)

Conditional autoregressive 0.92 (0.83, 1.04)

Gaussian process 0.94 (0.84, 1.06)

Spatial weighting 0.93 (0.85, 1.02)

Estimates of E(Y (1)|Z = 1)/E(Y (0)|Z = 1) and
95% confidence intervals from five methods,

assessing the impact of Superfund cleanups

(2001–2015) on the proportion of low birth

weight births (2016–2020) within 2 km buffers

around sites in New Jersey and Pennsylvania.
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